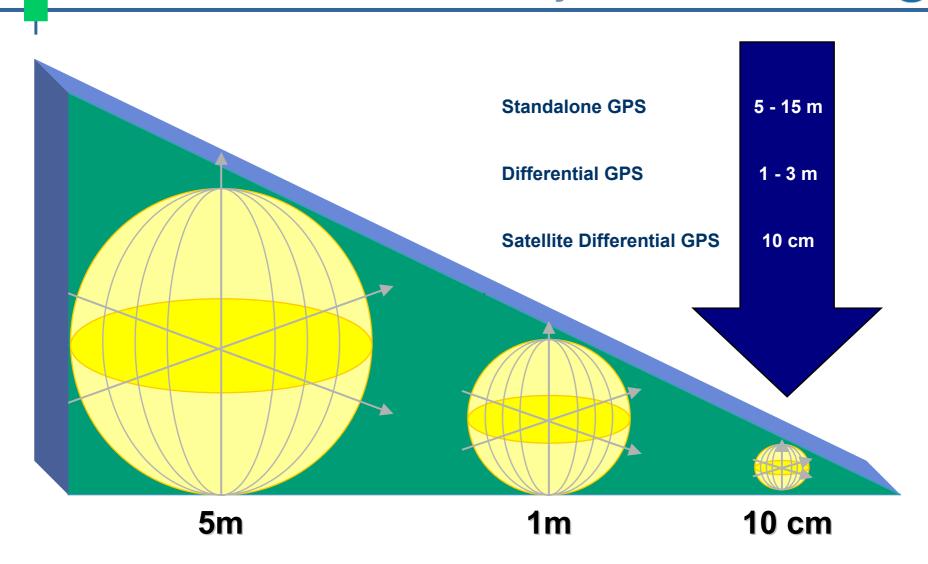
DESIMETERSYSTEM FOR HØYNØYAKTIG POSISJONERING OG NAVIGASJON

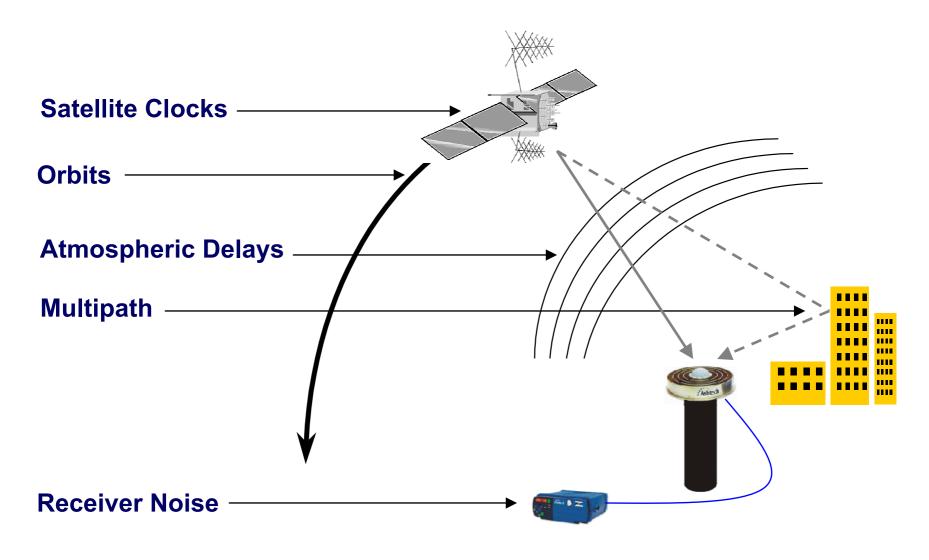
John A. Vint - Survey Manager - Thales GeoSolutions Norge AS

Geodesi- og hydrografidagene 2003 Hønefoss, 7. november 2003

Scope of Presentation (



- Introduction Summary of GPS Errors.
- Review of Principles of Differential GPS.
- Principles of SkyFix XP Satellite Differential GPS (Decimetre Accuracy).
- Overview of MultiFix4 SDGPS QC Software.
- System Performance and Accuracy.
- Offshore Applications for Systems with Decimetre Accuracy.
- Geodesy Associated with for Global Decimetric Systems.


GPS System Performance (C)

Principles of Differential GPS (+)

- - Based on monitoring and correcting systematic errors in the GPS System.
 - Establish a GPS receiver on an accurately co-ordinated point (Reference Station).
 - Observe the GPS System's systematic errors at this point (pseudorange corrections) – estimated errors.
 - Transfer these corrections to a mobile user via a data link.
 - Apply these corrections to the GPS measurements observed at the mobile user and compute a position.
 - System accuracy dependant on range from mobile to reference station.

Principles of Satellite Differential GPS ()

- Satellite Differential GPS SDGPS approaches the differential technique from a different perspective.
- No reference station range restrictions.
- Global coverage from a single set of corrections transmitted over communications satellite links.
- Extremely High Accuracy Positioning
 - 10cm Horizontal
 - 15cm Vertical

- Corrections are applied to the main GPS error sources:
 - Satellite Orbits
 - Satellite Clocks
 - Ionosphere
 - Troposphere
 - Multipath
 - Receiver Noise

SDGPS Software

SDGPS Corrections

Carrier Phase & Receiver Technology

Results in an 'error free' GPS position

Satellite Orbit Corrections:

- Each individual error source on each satellite is identified and uniquely corrected for.
- Thales GeoSolutions' network of reference stations are used to continuously track all satellites simultaneously.
- By tracking each satellite throughout its orbit a precise orbit correction can be generated.

Satellite Clock Corrections:

- The global network of reference stations are also used to generate highly accurate clock corrections.
- These corrections are transmitted over the SDGPS Link.

SDGPS Software Functionality (

Ionosphere Delays:

Dual frequency GPS observations used by SDGPS software to compute the ionospheric delays.

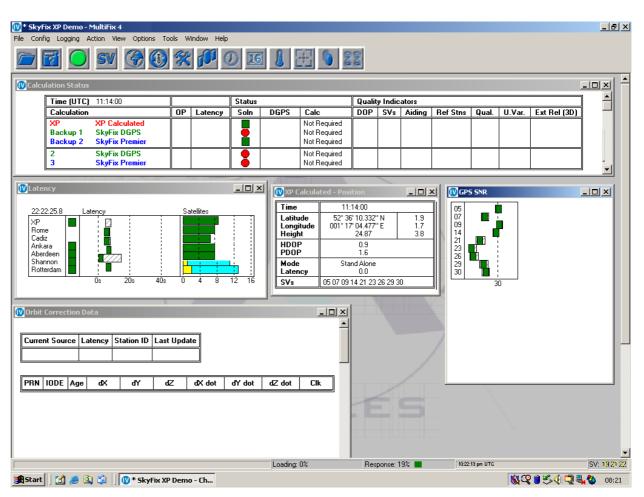
Tropospheric Delays:

Tropospheric delays are no longer modelled. These are computed by the SDGPS software.

Multipath & Receiver Noise:

- Use of carrier phase data in addition to code minimises these effects.
- Use of new GPS receiver technology, e.g. 'Strobe Edge' correlator technology in the Thales ZX-Sensor receiver.

SDGPS QC SOFTWARE

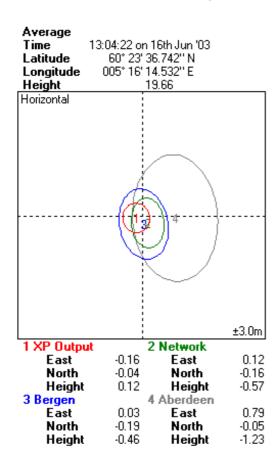


MultiFix4 QC Software 🕒

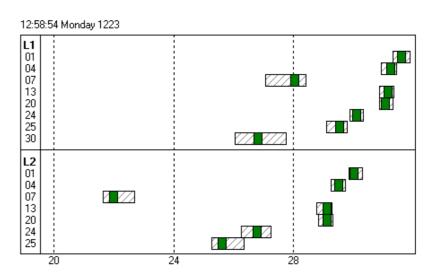
MultiFix4 Software

- New Generation of GPS QC Software from Thales GeoSolutions.
- The result of several year's of precision GPS software development.
- Runs on Microsoft Windows 2000 / XP
- Incorporates the proven MultiFix3 technology.

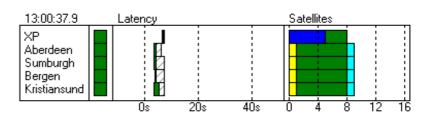
Calculation Status Display


Time (UTC) 12:58:20 on 16th Jun '03				Status			Quality Indicators						
Calculation		OP	Latency	Soln	DGPS	Calc	DOP	SVs	Aiding	Ref Stns	Qual.	U.Var.	Ext Rel (3D)
XP	XP Calculated	—	7.0 sec		L1/L2 Diff	OK - Converged	2.6	7	3D	N/A	0.39	0.058	0.142
Backup 1	Network		4.2 sec		L1 Diff	OK	2.0	8	3D	4 of 4	0.84	0.808	1.532
Backup 2	Bergen		5.4 sec		L1 Diff	OK	2.1	7	3D	1 of 1	1.26	0.315	3.027
2	Network		4.2 sec		L1 Diff	OK	2.0	8	3D	4 of 4	0.84	0.808	1.532
3	Bergen		5.4 sec		L1 Diff	OK	2.1	7	3D	1 of 1	1.26	0.315	3.027
4	Aberdeen		5.4 sec		L1 Diff	OK	2.1	7	3D	1 of 1	2.20	2.097	5.115
5	Sumburgh		5.4 sec		L1 Diff	ok	2.1	7	3D	1 of 1	1.96	1.379	4.482
6	Kristiansund		4.2 sec		L1 Diff	OK	2.0	8	3D	1 of 1	1.84	0.500	4.031
7	Stand Alone		0.0 sec		Standalone	OK	2.0	8	3D	0 of 0	3.98	1.638	14.242

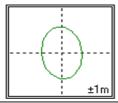
- Complete Summary of MultiFix4's Performance.
- Easily Understood "Traffic Light" Display.
- Automatic Computation Switching.
- Solution Status Summary.
- UKOOA Statistics / Quality Indicators Summary.



Extensive Quality Displays


Position Quality

Satellite Tracking Monitoring



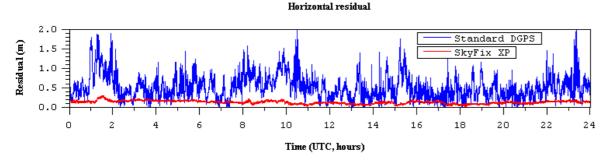
DGPS / SDGPS Status Monitoring

Full Display of all UKOOA Recommended DGPS Quality Figures

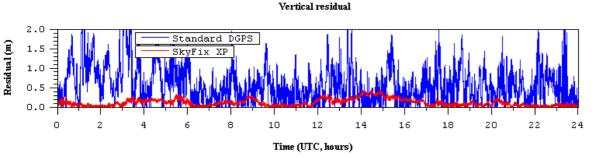
Latitude Longitude Height	60° 23' 36.737" N 005° 16' 14.541" E 19.53				
F-Test	Pass				
Unit Var.	0.749				
Ext Rel (2D)	0.445				

Station	RTCM	PRN	Elev.	Resid	SD	Norm. Resid.	MDE	Azi.	3D MDE	2D Pos	₩ Pass
Aberdeen	700	1	72°	-0.05	0.40	0.14	1.83	246°	0.33	0.06	Pass
		4	58°	0.12	0.38	0.32	1.82	137°	0.38	0.17	Pass
		7	12°	0.22	1.11	0.20	4.30	010°	0.49	0.20	Pass
		13	49°	-0.09	0.48	0.19	2.08	007°	0.29	0.22	Pass
		20	47°	-0.13	0.51	0.26	2.16	296°	0.17	0.15	Pass
		24	27°	-0.95	0.51	1.88	2.20	140°	0.20	0.16	Pass
		25	22°	1.47	0.62	2.37	2.59	226°	0.25	0.15	Pass
Sumburgh	710	1	72°	-0.24	0.35	0.68	1.63	245°	0.37	0.06	Pass
		4	58°	0.17	0.33	0.51	1.62	136°	0.44	0.20	Pass
		7	12°	0.73	1.00	0.73	3.92	010°	0.55	0.22	Pass
		13	49°	-0.04	0.42	0.09	1.86	008°	0.33	0.25	Pass
		20	47°	0.04	0.43	0.08	1.89	296°	0.20	0.18	Pass
		24	27°	-0.59	0.45	1.31	1.99	139°	0.22	0.19	Pass
		25	22°	0.71	0.53	1.34	2.30	225°	0.29	0.18	Pass
Bergen	780	1	72°	-0.09	0.23	0.37	1.16	214°	0.62	0.12	Pass
		4	58°	0.14	0.22	0.65	1.22	140°	0.75	0.36	Pass
		7	12°	0.28	0.48	0.59	2.53	012°	1.11	0.45	Pass
		13	49°	-0.06	0.23	0.25	1.21	012°	0.54	0.40	Pass
		20	47°	-0.14	0.23	0.64	1.21	288°	0.33	0.30	Pass
		24	27°	0.03	0.35	0.09	1.63	142°	0.30	0.28	Pass
		25	22°	0.14	0.34	0.40	1.73	218°	0.44	0.29	Pass
Kristiansund	790	1	72°	0.10	0.34	0.29	1.58	271°	0.36	0.06	Pass
		4	58°	0.44	0.33	1.35	1.58	129°	0.43	0.19	Pass
		13	49°	0.00	0.41	0.01	1.83	008°	0.37	0.28	Pass
		20	47°	-0.09	0.41	0.22	1.80	303°	0.23	0.20	Pass
		24	27°	-0.05	0.43	0.12	1.92	134°	0.23	0.18	Pass
		25	22°	-0.64	0.51	1.24	2.22	229°	0.30	0.17	Pass
		30	08°	-0.84	0.87	0.96	3.33	175°	0.27	0.07	Pass

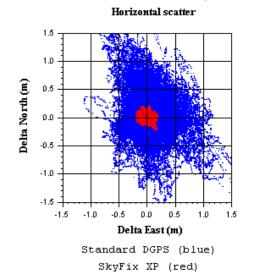
SYSTEM PERFORMANCE AND ACCURACY



System Performance and Accuracy (*)

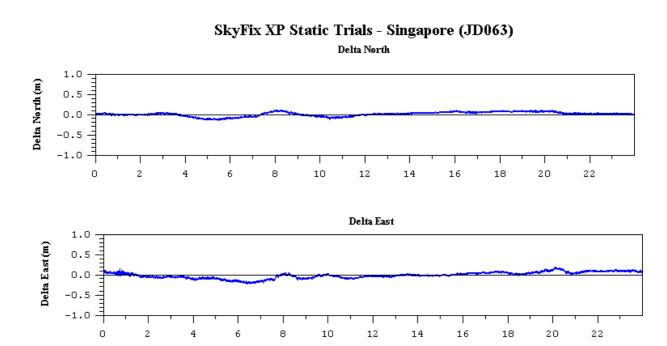


SDGPS versus DGPS



Standard DGPS vs. SkyFix XP

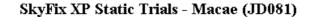
Standard DGPS vs. SkyFix XP

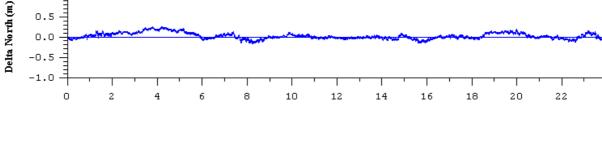

24 Hour Plots for Norwich, England

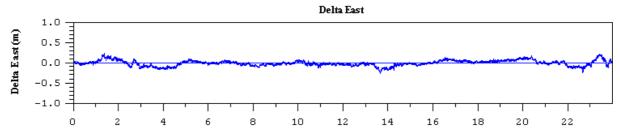
System Performance and Accuracy (

Singapore

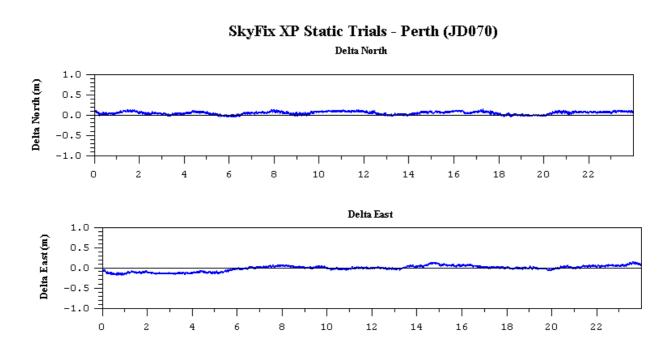
■ 24 Hour Plot


System Performance and Accuracy (


Macae, Brazil


1.0

0.5


■ 24 Hour Plot

System Performance and Accuracy ()

Perth, Australia

■ 24 Hour Plot

OFFSHORE APPLICATIONS

- Replacement for Tide Data for Subsea Engineering Projects:
 - Depth data traditionally corrected to vertical datum using tide data.
 - We now have the vertical accuracy to replace this data type.
 - Determine the height of vessel reference point / sensors with the aid of a motion sensor.
 - Can utilise a geoid model to produce geoid heights or use ellipsoidal heights as reference.
 - Thales Tide / Offset add-on to MultiFix4 available December 2003.
- High Precision Engineering:
 - Offshore platform installation.
 - Drilling rig positioning in critical areas.

- Replacement for Subsea LBL Acoustic Arrays:
 - LBL arrays are time consuming and expensive to deploy and calibrate.
 - A more elegant solution is SkyFix XP / MultiFix / HiPAP USBL.
 - Accuracy 20 cm to 50 cm subsea depending on water depth.
- Vessel Dynamic Positioning Systems
 - High accuracy = Less fuel used (savings in fuel costs).
 - Less fuel used = environmentally friendly.
 - Less thruster noise = quieter environment for survey sensors.
- Other Applications Requiring Decimetre Accuracy

SkyFix XP SDGPS Service & MultiFix4 were Launched as a Commercial Product in May 2003

QUESTIONS?

